
www.manaraa.com

Functional LanguagesandIntroductory Computer ScienceJohn E. HowlandDepartment of Computer ScienceTrinity University715 Stadium DriveSan Antonio, Texas 78212-7200Voice: (210) 736-7480Fax: (210) 736-7477Internet: jhowland@ariel.cs.trinity.eduAbstractThe choice of which programming language to use in introductory com-puter science courses is guaranteed to spark debate in the computer sciencecommunity. Programming languages used in computer science instructionhave followed various trends or fads within the computing industry. Thelanguage choice has often been between languages which are currently inwide use by industry for software production. While it is true that com-puter science education has a responsibility to achieve a balance betweenproviding training in current practices within the �eld and core conceptsand theory, it is felt that computer science education should not be overlyinuenced by popular trends when choosing a programming language touse in the teaching of introductory computer science. Functional program-ming languages are shown to be useful in the teaching of the concepts ofcomputer science. The functional language approach presented in thispaper has advantages over imperative languages in the areas of modelbuilding, exposition, experimentation and analysis of algorithms. Exam-ples using the J and Scheme programming languages, with emphasis onthe use of functional programming notation in exposition are given. 11The abstract of this paper appears in the Journal of Computing in Small Colleges, Volume13, Number 4, Page 151, March 1998. Copyright c1998 by the Consortium for Computingin Small Colleges. Permission to copy without fee all or part of this material is grantedprovided that the copies are not made or distributed for direct commercial advantage, theCCSC copyright notice and the title of the publication and its date appear, and notice isgiven that copying is by permission of the Consortium for Computing in Small Colleges. Tocopy otherwise, or to republish, requires a fee and/or speci�c permission. The paper waspresented at the CCSC South-Central Conference, April 18, 1998, Millsaps College, Jackson,Mississippi. 1

www.manaraa.com

Subject Areas: Computer Science Education, J, Scheme, Exposition.Keywords: computer science introductory course, J, Scheme, exposition.1 IntroductionThe choice of which programming language to use in introductory computerscience courses borders on being a religious issue in which divides computerscience departments over issues involving what are believed to be practical skillsrequired by industry and the requirements of pedagogy. More often, in the past,industrial requirements have prevailed as witnessed by the use of languagessuch as Cobol, FORTRAN, PL/I and more recently C and C++. Languageshave been developed which have, in part, focused on education, i.e. Pascal,Modula, etc., but these languages have not become a dominant force in thecommercial production of software. At least one computer scientist [Dij 89]has advocated the use of an unimplemented programming language to teachcomputer science which necessarily forces programming instruction to be purelyan intellectual activity. Recent growth in Internet activity has provided stimulusfor the development of software systems which may be executed on a varietyof di�erent hardware/software environments. One of these, Java, which usesan abstract Java virtual machine to host the software is remarkably similar inoverall concept to the Pascal P machine. Because of Internet popularity, Javais now proposed by some as a suitable vehicle for teaching computer science.Trends or fads come and go in computer science education just as in other �elds.In each of the programming languages mentioned above, it is not clear thatthe choice to use the language for computer science instruction is made primar-ily for pedagogical reasons. In Section 1.1, criteria are given which are basedon requirements of computer science instruction, particularly use of program-ming notation in an expository fashion in the teaching of introductory computerscience.Functional languages provide a computational environment where functionsare applied to arguments producing results. Once an item is created in memoryit is never altered. Function application occurs without side e�ects. Algorithmsinvolve sequences of function applications (functional composition). Most func-tional language environments automatically reclaim (garbage collection) itemswhich are no longer needed.Imperative languages use a state model of computation wherein proceduresmodify the state of items stored in memory as a computation proceeds frombeginning to end.Functional languages provide somewhat di�erent view of program designwhich can be useful in the teaching of introductory computer science topics.In the following sections, programming examples are given in the Scheme [Har 94,Man 95, Spr 89] and J [Ive 95] programming languages. J is a pure functionallanguage, however, Scheme is not. A subset of Scheme, which omits any Schemefunction which mutates an existent Scheme item, is used for the examples inthis paper. 2

www.manaraa.com

The choice of programming language used to teach computer science topicshas been widely discussed in the computer science education literature. In par-ticular, [Kon 74, Kon 94, Rie 93, How 94, How 95, How 96, How 97] advocatethe use of functional languages, such as J and Scheme, in the teaching of manyintroductory computer science topics. This paper considers the use of Schemeor J when teaching introductory computer science.1.1 Criteria� Interactive Environment� Language Sentence Structure� Model Building� Experimentation� Reasoning About Programs� Data Abstraction� Procedure Abstraction� Functional and Imperative Programming� Exact and Inexact Arithmetic� Object Programming� Recursion� Iteration� Algorithm Analysis� Recursion and Iteration Operators2 Interactive EnvironmentThe advent of computer equipped classrooms where the instructor and studentshave workstations and network based systems for using language aware elec-tronic blackboards has increased the importance of an interactive environmentfor a language. By interactive, we mean systems which operate in a read-evaluate-print loop. One enters an expression which is parsed, analyzed andevaluated in real time and then results are printed and the process is repeated.Of course such systems may be run in batch mode reading from standard inputand writing to standard output with input/output redirection. Also, althoughsuch systems are often implemented as interpreters, the interactive Scheme andJ systems may also have compilers which are capable of generating binary ma-chine language programs. 3

www.manaraa.com

2.1 Scheme ExampleThe Scheme system illustrated here prompts the user for input with \> ". Sys-tem output starts at the left margin.> (map + '(1 2 3) '(10 20 40))(11 22 43)>2.2 J ExampleThe J system illustrated here prompts the user for input with three spaces.System output starts at the left margin.1 2 3 + 10 20 4011 22 433 Language Sentence StructureWhen using programming notation in an expository notation for computer sci-ence, it is important that the notation have a sentence structure that can beeasily verbalized. When reading and thinking in an explicit manner, we actuallyverbalize our thoughts even though we are not speaking out loud. Conventionalprogramming languages are often di�cult to verbalize and because of this arenot as suitable for exposition as are languages which are more easily verbalized.Dijkstra [Dij 72], in his Turing lecture, \The Humble Programmer", stated \...that the tool we are trying to use and the language or notation we are using toexpress or record our thoughts are the major factors determining that we canthink or express at all!". The expressive power of a language is one yardstickby which one may measure the relative merits of a programming language.A programming notation which is used in an expository manner should havea simple syntax which is easy to learn and an easily understood evaluation rule.3.1 Scheme SentencesScheme sentences are sequences of words separated by spaces, preceded andfollowed by \(" and \)". The �rst word of a sentence is a verb (or verb likespecial word) which is applied to the remaining words in the sentence. Forexample:> (* 2 3)6is verbalized as times 2 3. Some sentences use special words which are technicallynot verbs. An example is:(if (< a b)ab) 4

www.manaraa.com

This sentence may be verbalized as If less than a b, then a, else b. The wordif is not a verb which means that an if sentence has a special evaluation rule.There are relatively few special words and hence relatively few exceptions to thenormal rule for sentence formation.Compound sentences may be formed as in:(* (- a b) (- a c))which might be verbalized as Times the quantity minus a b and the quantityminus a c.3.2 J SentencesJ sentences are sequences of words separated by spaces. Most sentences arelimited to one physical line and are read from left to right. The J primitive wordsare formed from the ASCII character set. Primitive words are represented witha single character or a character followed by a period or colon. For example, >represents larger than, >. larger of and >: increment. Terminology from Englishgrammar is used to describe J. Functions are referred to as verbs, constantsas nouns, names assigned to values as pronouns and names assigned to verbsas proverbs. In�x conventions are used which means that dyads (verbs havingtwo nouns or pronouns as inputs) are written between the nouns while monads(verbs having one noun or pronoun as input) are written before the noun. Forexample:2 * 36is verbalized as 2 times 3. Compound sentences may be formed as in:2 * 3 + 414which might be verbalized as 2 times, 3 plus 4. With the exception of subordi-nate clauses enclosed in parentheses, verbs are evaluated in the order from rightto left so that the sentences may be read from left to right. The right input toa verb is the value of the entire expression to the right and the left input is thevalue of the noun immediately to the left of the verb. Most verb symbols havetwo interpretations (dyad or monad) and the choice between interpretations isdetermined by the context as illustrated by the sentence:4 - - 26which is verbalized as 4 subtract negate 2. Punctuation (parentheses) may beused to modify the order of evaluation as in:(2 * 3) + 410 5

www.manaraa.com

which is verbalized as The quantity 2 times 3 plus 4.In J, verbs may be modi�ed by adverbs or conjunctions to form new verbswhich are then applied to inputs. For example, in:+/1 2 3 410 */1 2 3 424the �rst is verbalized as plus insert the list 1 2 3 4 while the second is verbalizedas times insert the list 1 2 3 4. In each of these sentences, the adverb insert(spelled "/") modi�es the verb (plus or times) producing a new verb which sumsor multiplies the elements of the list. Adverbs or conjunctions have precedenceover verbs with the left input being the entire verb phrase on the left.3.3 ProgramsIn both Scheme and J, programs and data are represented by the same notation;lists in Scheme and lists or arrays in J. This closely models the situation ofstoring both programs and data in the memory of a computer in numeric form.Scheme Programs A single sentence is a simple Scheme program. For ex-ample:> (* (+ 4 5) (- 3 2))9Functions may be de�ned as compound sentences involving the special wordsde�ne and lambda. For example:(define square(lambda (x)(* x x)))Then> (square 10)100Data is described using the special word quote as follows:(define people(quote ((Clinton (president United States))(Dole (wanted to be President))(Perot (also wanted to be President)))))> (length people)3 6

www.manaraa.com

J Programs A single J sentence is also a program. For example:(4 + 5) * (3 - 2)9The J word "=:" assigns (binds) a name (pronoun) to a value (noun). Forexample, suppose we have de�ned the following words:monad =: 3define =: :Then the sentence:square =: monad define 'y. * y.'is an explicit de�nition for the square function. The pronoun "y." always refersto the input of a monad. Given this de�nition, then we may write:square 10100The J notation provides great expressive power when de�ning functions throughan alternate method called tacit de�nition. A feature of tacit de�nition is thereis no reference to the inputs of a de�nition. For example, square could also bede�ned as:square =: ^&2Here we are using a conjunction (a verb producing verb) called bond (spelled\&") which takes a verb input on the left (power function, spelled \^") and anoun input (2) on the right and produces a new verb which squares its argument.Square could also be de�ned as:square =: *~Here we use the adverb reex (spelled \~") which takes a dyad as its left inputand converts the dyad into a monad by using its input y. as its left and rightinput for the dyad. In this case the verb derived from * is y. * y. .Finally, the square function occurs frequently enough in programs so that itis provided as a primitive function in J, (spelled "*:". So we could also write:square =: *:4 Model BuildingA technique, useful in the teaching of computer science, is to use programmingnotation to build small working models of the topic being described. A success-ful notation, in this application, will provide concise, but fully accurate, workingmodels. Both Scheme and J excel in model building. Suppose we wish to use re-cursive de�nitions, in a divide and conquer fashion, to model both recursive anditerative processes. This technique is often used when analyzing the �bonaccisequence. We use this example to illustrate not only modeling techniques butalso illustrate the expressive power of Scheme and J to describe recursive anditerative processes and continuations. 7

www.manaraa.com

4.1 Modeling Processes with SchemeThe �bonacci sequence 0 1 1 2 3 5 8 13, ... may be generated by the recursivede�nition:(define fibonacci(lambda (n)(if (< n 2)n(+(fibonacci (- n 1))(fibonacci (- n 2))))))When analyzing this recursive de�nition, it is useful to de�ne a related function,�b-work, whose value, given an input n, is the number of times �bonacci is calledwhen evaluating (fibonacci n). It is easy to show that �b-work may be de�nedas:(define fib-work(lambda (n)(if (< n 2)1(+ 1(fib-work (- n 1))(fib-work (- n 2))))))�b-work, itself, generates the values of a kind of �bonacci sequence. If it is ourgoal to evaluate either of these functions for inputs greater than 25 to 30, itis necessary to convert these de�nitions to de�nitions which result in iterativeprocesses. A recursive de�nition for �b-work which results in an iterative processis given by the de�nition:(define fib-work-iter(lambda (n) (fib-work-iter-helper 1 1 n)))(define fib-work-iter-helper(lambda (a b count)(if (= count 0)b(fib-work-iter-helper (+ 1 a b) a (- count 1)))))Suppose f is a compound expression and e is a sub expression of f. The continu-ation of e in f is that function of a single input x, (lambda (x) ...) which containsthe execution in f which remains to be done after evaluating the sub expressione. This means that the value of the entire expression f may be obtained byevaluating ((lambda (x) ...) e). Continuations allow a compound expression tobe factored into an expression e which is evaluated �rst and a function whichmay be called with the resulting value of e as an input.8

www.manaraa.com

The idea of a continuation may be used to de�ne tail recursive functions. Afunction is tail recursive if the continuation of each recursive reference in thede�nition is the identity function.Analysis of �b-work-iter reveals that the work of this de�nition is done by therecursive de�nition �b-work-iter-helper which has one recursive use of �b- work-iter-helper whose continuation is the identity function. Hence, �b-work- iter istail recursive which means that its process is iterative. Here we are assumingthat any tail recursive de�nition will be optimized by the Scheme system sothat an iterative process will be generated. This will be true of any standardScheme implementation. The end result of all of this is that �b-work-iter willeasily evaluate the �b-work function for the input value 100. Indeed,> (fib-work-iter 100)11462956880276341682014.2 Modeling Processes with JWe express the same example used in Section 4.1 using the J notation to showthe expressiveness of J for modeling and recursive and iterative processes.The �bonacci sequence 0 1 1 2 3 5 8 13, ... may be generated by the recursivede�nition:fibonacci =: monad define scriptif. y. < 2do. y.else. (fibonacci y. - 1) + fibonacci y. - 2end.)When analyzing this recursive de�nition, it is useful to de�ne a related function,�b work, whose value, given an input n, is the number of times �bonacci is calledwhen evaluating �bonacci n . It is easy to show that �b work may be de�nedas:fib_work =: monad define scriptif. y. < 2do. 1else. 1 + (fib_work y. - 1) + fib_work y. - 2end.)As in Section 4.1, �b work, itself, generates the values of a kind of �bonaccisequence. If it is our goal to evaluate either of these functions for inputs greaterthan 25 to 30, it is necessary to convert these de�nitions to de�nitions whichresult in iterative processes. A recursive de�nition for �b work which results inan iterative process is given by the de�nition:9

www.manaraa.com

fib_work_iter =: monad define 'fib_work_iter_helper 1 1 , y.'fib_work_iter_helper =: monad define script('a' ; 'b' ; 'count') =. y.if. count = 0do. belse. fib_work_iter_helper (1 + a + b) , a , count - 1end.)Again, as in Section 4.1, we may de�ne the idea of a continuation. Suppose fis a compound expression and e is a sub expression of f. The continuation ofe in f is that monad having input y., monad de�ne '... y. ...' which containsthe execution in f which remains to be done after evaluating the sub expressione. This means that the value of the entire expression f may be obtained byevaluating:monad define '... y. ...' e.Since the continuation of each recursive use of �b work iter helper in the de�-nition of �b work iter helper is the identity function, �b work iter generates amore e�cient iterative process so that:fib_work_iter 100x1146295688027634168201xThe J numeric su�x "x" indicates that an exact numeric representation shouldbe used in this computation.5 ExperimentationExperimental methods play an important role in computer science and shouldbe a part of the introductory computer science curriculum. Measuring programperformance, testing experimental hypotheses are areas where traditional sci-enti�c methodology may be used. Scheme and J systems provide facilities formeasurements of memory space and execution time of programs. As an exam-ple of a simple experiment which might be performed by introductory students,consider the problem of estimating the execution time of the recursive �bonaccifunction discussed in Section 4. In Section 5.1, a J version of this experiment isdescribed. The Scheme description of this experiment is similar.5.1 Using J to Estimate the Time to Evaluate �bonacci100First de�ne the time verb using the external conjunction. time returns the timein seconds to evaluate the sentence given as its right input.time =: 6 !: 2 10

www.manaraa.com

Next, using the de�nition of �bonacci given in Section 4.2, determine the speed,in calls per sec to �bonacci, of �bonacci n for values of n not more than about25. Note that you need to use the �b work iter function from Section 4.2 tocompute these speeds. For example, on a RISC workstation you might measurethis speed as:(fib_work_iter 20) % 10 time 'fibonacci 20'2650.24This measurement gives a speed of about 2650 calls per sec as determined bythe average of 10 evaluations of �bonacci 20.The next step of the experiment involves dividing �b work iter 100 by 2650to obtain the estimate of the time in seconds to evaluate �bonacci 100. Thisdivision requires exact integer division which is expressed in J as:0 2650 #: 1146295688027634168201x432564410576465723x 2251xIgnoring the remainder of 2251 we have a result of 432564410576465723 seconds(the su�x "x" indicates an exact integer). Students performing this lab arealways surprised to learn that this time is 13,716,527,478 years, 350 days, 4hours, 55 minutes and 23 seconds. This result is easily expressed in J as:0 365 24 60 60 #: 432564410576465723x13716527478x 350x 4x 55x 23x6 Reasoning About ProgramsMyers [My 90] makes compelling arguments that an introduction to formalmethods should be a part of introductory computer science courses. Such meth-ods include the topics of proof of program correctness, analytic methods oftransformation and simpli�cation of programs, etc. Since both Scheme and Jare derived from formal mathematical notation it is not surprising that theymay be used to introduce and describe formal methods in computer science.In [Ive 95], Iverson describes J as "... a formal imperative language. Becauseit is imperative, a sentence in J may also be called an instruction, and may beexecuted to produce a result. Because it is formal and unambiguous it can beexecuted mechanically by a computer, and is therefore called a programminglanguage. Because it shares the analytic properties of mathematical notation,it is also called an analytic language."6.1 Using J for ProofsIverson and others have written several books which use J to describe a numberof computing related topics. One of these [Iv 95] uses J in a rather formal wayto express algorithms and proofs of topics covered in [Gr 89]. Following is anexample from the introduction of [Iv 95].11

www.manaraa.com

A theorem is an assertion that one expression l is equivalent to another r.We can express this relationship in J as:t=: l -: rThis is the same as saying that l must match r, that is, t must be the constantfunction 1 for all inputs. T is sometimes called a tautology. For example,supposel =: +/ @ i. NB. Sum of integersr =: (] *] - 1:) % 2:If we de�ne n =:] , the right identity function, the we can rewrite the lastequations as:r =: (n * n - 1:) % 2:Next,t =: l -: rNotice that by experimentation, t seems to always be 1 no matter what inputargument is used.t 1 2 3 4 5 6 7 8 91 1 1 1 1 1 1 1 1A proof of this theorem is a sequence of equivalent expressions which leads froml to r.l+/ @ i. Definition of l+/ @ |. i. Sum is associative and commutative(|. is reverse)((+/ @ i.) + (+/ @ |. @ i.)) % 2: Half sum of equal values+/ @ (i. + |. @ i.) % 2: Summation distributes over addition+/ @ (n # n - 1:) % 2: Each term is n -1; there are n terms(n * n - 1:) % 2: Definition of multiplicationr Definition of rOf course, each expression in the above proof is a simple program and the proofis a sequence of justi�cations which allow transformation of one expression tothe next.7 Data AbstractionBoth Scheme and J allow a functional approach to data abstraction which allowsdata abstractions to be separated from actual representation of abstract datatypes. This approach provides an interface which de�nes software layers. A Jexample of an abstract data type of stack is given.12

www.manaraa.com

7.1 J Data Abstraction for StacksWe de�ne the stack data type to be a collection of J items together with thefollowing operations:make_stack ==> constructs a stackstackp obj ==> 1 if obj is a stack, else 0empty_stackp stack ==> 1 if stack empty, else 0push_stack item ; stack ==> put item on stackpop_stack stack ==> remove last item pushed on stacktop_stack stack ==> return last item pushed on stackwithout removing that value from stackWe represent a stack as a J boxed list which has a stack "tag" of 'stack' as its�rst item. First we de�ne the helping words:box =: <open =: >match =: -:first =: {.append =: ,drop_last =: _1 & }.last =: _1 & {stack_tag =: box 'stack'the_empty_stack =: box stack_tagThe stack operations may be written as:make_stack =: monad define 'the_empty_stack'stackp =: monad define 'stack_tag match first open y.'empty_stackp =: monad define 'the_empty_stack match y.'push_stack =: monad define script('item' ; 'obj') =. y.if. not stackp box objdo. error 'wrong type second input to push_stack' ; objelse. box obj append box itemend.)pop_stack =: monad define scriptif. not stackp y.do. error 'wrong type input to pop_stack' ; y.else. box drop_last open y.end.) 13

www.manaraa.com

top_stack =: monad define scriptif. not stackp y.do. error 'wrong type input to top_stack' ; y.else. open last open y.end.)7.2 Using the J stack abstractionFollowing is a sample session using the stack abstraction of Section 7.1.s =: make_stack ''stackp s1 NB. s is a stackempty_stackp s1 s =: push_stack 1 2 3 ; s NB. Push the list 1 2 3 on stop_stack s1 2 3empty_stackp s0 NB. s is not empty nows =: push_stack 'Some text' ; s NB. Push a char string on stop_stack sSome texts =: pop_stack stop_stack s1 2 3s =: pop_stack sempty_stackp s1 NB. s is empty again8 Procedure AbstractionProcedure abstraction is not easily achieved in languages such as Pascal, Cor C++, however, in Scheme and J, functions are �rst class entities. Theymay be passed as arguments, assigned names and returned as values. Springerand Friedman [Spr 89] describe procedural abstractions in Scheme which solveclasses of problems involving at recursion of the top level elements of a list ordeep recursion on all sub lists of a list.8.1 Procedural Abstraction using JIn J, functions may be passed as arguments and returned as values. Adverbs arefunctions whose arguments are functions and results are functions. For example,insert (spelled "/") is an adverb which derives a verb result which is insertedbetween the items of its argument. 14

www.manaraa.com

+/ 10 20 50 NB. sum80 */ 10 20 50 NB. product10000-/ 10 20 50 NB. difference40Suppose a is de�ned by:a =: i. 2 3a0 1 23 4 5 +/ a3 5 7 */ a0 4 10Rank (spelled ", double quote) is a conjunction (a verb producing dyad) pro-duces a result verb (derived from its left input) which is applied to its argumentaccording to the right input of rank. For example, a (de�ned above) has tworows and 3 columns, and is said to be of rank 2 (2 dimensions).+/ " 1 a NB. plus insert applied to the rank 1 items of a (rows)3 12 NB. row sum*/ " 1 a NB. times insert applied to the rank 1 items of a (rows)0 60 NB. row product+/ " 2 a NB. plus insert applied to the rank 2 items of a (columns)3 5 7 NB. column sum*/ " 2 a NB. times insert applied to the rank 2 items of a (columns)0 4 10 NB. column productJ supports a number of other abstractions, too numerous to mention in thispaper, such as hooks, forks, trains, function arrays, gerunds, agenda, powerand inverse (where de�ned) for primitive functions as well as explicitly de�nedfunctions.9 Functional and Imperative ProgrammingScheme supports a functional style of programming (when you restrict use ofprocedures which alter already existent object, such as set-car!, set-cdr!, vector-set!, vector-�ll!, etc.) as well as an imperative style of programming when theabove mentioned procedures are used. J is a functional notation where the modelof computation consists of application of functions to arguments without sidee�ects (roll and deal have side e�ects; pseudo random state is modi�ed). Oncean item is created in memory it is never modi�ed; functions may be applied to15

www.manaraa.com

such items producing new items. Functional composition is the primary modelfor computation.10 Exact and Inexact ArithmeticScheme and J both support a model of exact integer arithmetic in additionto arithmetic of other numeric types such as complex and inexact (oatingpoint) numbers. Exact values are limited in precision only by available (possiblyvirtual) memory.11 Object ProgrammingObject programming combines data structure and operations on data structureto entities called objects. Objects provide abstraction, encapsulation and inher-itance to provide data based modularization for programs. Objects are easilymodeled in Scheme using lexical closures [How 94], Chapter 6. Objects may bemodeled in J using locales [How 94], Chapter 6.12 RecursionA de�nition which refers to itself is a recursive de�nition. We consider severalexamples of recursive de�nitions which illustrate our approach to teaching re-cursion. The �rst of these examples is a trivial problem which is used so thatthe problem being solved does not interfere with understanding the approachbeing used to teach recursion.12.1 Summing the First n Positive IntegersThe �rst example uses a recursive de�nition to sum the integers 1 to k. Thedivide and conquer solution has two cases.1. Base case.When there are no integers to be added, the result should be zero.2. Smaller, but identical, problem.When there are k (k>0) integers, the solution can be written as k+sum(k-1).Following are the Scheme and J programs for summing the integers 1 to k.(define sum(lambda(n)(if (= n 0)0(+ n (sum (- n 1)))))) 16

www.manaraa.com

Program sum (Scheme Version)sum =: monad define scriptif. y. = 0do. 0else. y. + sum y. - 1end.) Program sum (J Version)12.2 Tracing the Execution of a Recursive De�nitionMost functional programming environments support traced execution of de�ni-tions. Next, we show the traced output of the Scheme version of sum.> (trace sum)#<unspecified>> (sum 5)"CALLED" sum 5"CALLED" sum 4"CALLED" sum 3"CALLED" sum 2"CALLED" sum 1"CALLED" sum 0"RETURNED" sum 0"RETURNED" sum 1"RETURNED" sum 3"RETURNED" sum 6"RETURNED" sum 10"RETURNED" sum 1515 If a programming environment does not support traced evaluation, it isstraight forward to implement traced versions of recursive de�nitions. This isillustrated for the J version of sum.traced_sum =: monad define scriptentering y.if. y. = 0do. leaving 0else. leaving y. + traced_sum y. - 1end.) Program traced_sum (J Version)The functions entering and leaving are de�ned as shown below.17

www.manaraa.com

entering =: 'Entering, input = '&traceleaving =: 'Leaving, result = '&tracetrace =: monad define scriptdisplay y.:display (format x.),format y.y.)display =: 1 !: 2 & 2Execution of traced_sum gives the following output.traced_sum 5Entering, input = 5Entering, input = 4Entering, input = 3Entering, input = 2Entering, input = 1Entering, input = 0Leaving, result = 0Leaving, result = 1Leaving, result = 3Leaving, result = 6Leaving, result = 10Leaving, result = 151512.3 The Factorial FunctionTo compute the product of the integers 1 to k using the divide and conquerapproach, we have, as in Section 12.1, two cases.1. Base case.When there are no integers to be multiplied, the result should be one.2. Smaller, but identical, problem.When there are k (k>0) integers, the solution may be written as k*factorial(k-1).Following are the Scheme and J programs for computing the product of theintegers 1 to k.(define factorial(lambda(n)(if (= n 0)1(* n (factorial (- n 1))))))18

www.manaraa.com

Program factorial (Scheme Version)factorial =: monad define scriptif. y. = 0do. 1else. y. * factorial y. - 1end.) Program factorial (J Version)As in Section 12.1, we can trace the execution of factorial.> (trace factorial)#<unspecified>> (factorial 6)"CALLED" factorial 6"CALLED" factorial 5"CALLED" factorial 4"CALLED" factorial 3"CALLED" factorial 2"CALLED" factorial 1"CALLED" factorial 0"RETURNED" factorial 1"RETURNED" factorial 1"RETURNED" factorial 2"RETURNED" factorial 6"RETURNED" factorial 24"RETURNED" factorial 120"RETURNED" factorial 72072012.4 ContinuationsIn Sections 12.2 and 12.3 we notice that the functions sum and factorial arecalled repeatedly until the problem has been reduced to a problem of size zero.No results are returned by any of these calls until a call is made for a problemof size zero. For each of the calls made for problems of size greater than zero, arecord of the computation remaining to be done must be saved. We formalizethe concept of representing the remaining computation as a monad (function ofone argument) with the following de�nition.2Given a compound expression e and a subexpression f of e, the continuationof f in e is the computation in e, written as a monad, which remains to be doneafter �rst evaluating f. When the continuation of f in e is applied to the result2This de�nition of continuation should not be confused with the de�nition of the Schemecall-with-current-continuation[Spr 89]. 19

www.manaraa.com

of evaluating f, the result is the same as evaluating the expression e. Let c bethe continuation of f in e. The expression e may then be written as c f.Continuations provide a \factorization" of expressions into two parts; fwhich is evaluated �rst and c which is later applied to the result of f. Con-tinuations are helpful in the analysis of algorithms.12.5 Scheme ExampleSuppose e is the expression (* 2 (+ 3 4)) and f is the subexpression (+ 3 4),then the continuation of f in e is(lambda(n) (* 2 n))and((lambda(n) (* 2 n)) (+ 3 4))produces the same result of 14 as does(* 2 (+ 3 4))12.6 J ExampleSuppose e is the expression 5 * 4 + 5 and f is the subexpression 4 + 5, thenthe continuation of f in e ismonad define '5 * y.'and(monad define '5 * y.') 4 + 5produces the same result of 45 as does5 * 4 + 512.7 Expressing Recursion as Functional CompositionConsider the function sum of Section 12.1 and evaluate the sum of the integers 1to 5. We next write out the 5 continuations which must be formed to completethis evaluation.
20

www.manaraa.com

12.8 Using Scheme NotationThe �ve continuations are:(define c1(lambda(n) (+ 5 n)))(define c2(lambda(n) (+ 4 n)))(define c3(lambda(n) (+ 3 n)))(define c4(lambda(n) (+ 2 n)))(define c5(lambda(n) (+ 1 n)))Then the value of (sum 5) may be written as(c1 (c2 (c3 (c4 (c5 0)))))12.9 Using J NotationConsider the factorial function de�ned in Section 12.3 and evaluate factorial 5.Five continuations must be formed during this evaluation. They are:c1 =: monad define'5 * y.'c2 =: monad define'4 * y.'c3 =: monad define'3 * y.'c4 =: monad define'2 * y.'c5 =: monad define'1 * y.'Then the value of factorial 5 may be written asc1 c2 c3 c4 c5 113 IterationWe next consider an alternate solution to the problem of summing the integersfrom 1 to k. This solution uses a recursive de�nition but does not use the divideand conquer strategy.13.1 Scheme ExampleThe Scheme de�nition(define sum-iter(lambda(n acc i)(if (> i n)acc(sum-iter n (+ acc i) (+ i 1)))))21

www.manaraa.com

solves the problem of summing the integers 1 to 5 when applied to the arguments5 0 1. We can create a new de�nition sum1 which solves the problem of summingthe integers 1 to k, given the size of the problem k, with the de�nition(define sum1(lambda(k)(sum-iter k 0 1)))Analysis of sum1 involves analyzing sum-iter since sum1 makes a singlecall to sum-iter. The de�nition of sum-iter is recursive. Next, using thede�nition of a continuation in Section 12.4, we write the continuation of eachcall to sum-iter inside the de�nition of sum-iter. This de�nition consists ofa single if expression. The only time recursive calls are made to sum-iter iswhen i is less than or equal to n. The continuation of the call to sum-iter maybe written as(lambda(n) n)This is the identity function. Since each continuation simply returns itsargument, there is no need to form the continuations in the �rst place andit is possible for an optimizing compiler or interpreter to derive an equivalentprogram which replaces the recursive calls to sum-iter with an iteration whichdirectly forms the sum of 0 + 1 + . . . + k with a single call to sum-iter.13.2 J ExampleNext we consider an alternate solution to the problem from Section 12.3 ofcomputing the product of the integers 1 to k which does not use the divide andconquer strategy.The de�nitionfactorial_iter =: monad define script('n' ; 'acc' ; 'i') =. y.if. i > ndo. accelse. factorial_iter n , (i * acc) , i + 1end.)computes the product of the integers 1 to 5 when applied to the argument 5 11. A cover function for factorial_iter may be de�ned asfactorial1 =: monad define 'factorial_iter y. , 1 1'so that factorial1 5 produces a result of 120.The analysis of factorial_iter is similar to the analysis of sum-iter inSection 13.1. The continuation of the recursive call to factorial_iter in thede�nition of factorial_iter is 22

www.manaraa.com

monad define 'y.'Hence, no continuations need be saved and an optimizing compiler or in-terpreter will replace the recursion with iteration which directly computes theproduct of the integers 1 to k using a single call to factorial_iter.13.3 Tail RecursionA recursive de�nition, f, is said to be tail recursive if the continuation of eachrecursive call to f is the identity function. As long as the de�nition is notmutually recursive, it is an easy exercise for students to examine the source codeof a de�nition and explicitly write the continuations to determine whether or notthe de�nition is tail recursive. As many compilers and interpreters automaticallyrecognize tail recursion and convert such de�nitions to loops (gcc, for example),students quickly learn that they can write e�cient iteration loops in a functionalstyle.The analysis of mutually recursive de�nitions is done in a similar fashionby hand, but is problematic for compilers and interpreters, particularly if thede�nitions are compiled separately.14 Analyzing AlgorithmsStudents �nd that it is convenient to think of recursion in terms of compositionof functions. They are explicitly aware of the order in which operations aredone. For example, in Section 12.8, it is clear that the sum is accumulated inthe order 0 + 1 + . . . + 5. They are also aware that recursive de�nitions may beused to provide e�cient iterative programs as a result of analysis to determinewhether or not a de�nition is tail recursive.14.1 Recursive FibonacciThe recursive de�nitions mentioned above all involved trivial linear recursiveprocesses. The next example illustrates the kind of analysis a student mightperform on a less trivial problem. Consider the standard recursive de�nition ofthe fibonacci function.fibonacci =: monad define scriptif. y. < 2do. y.else. (fibonacci y. - 1) + fibonacci y. - 2end.) Program fibonacci (J Version)Applying fibonacci to the argument 5 produces a result of 5. Tracing fibonacciproduces the output 23

www.manaraa.com

traced_fibonacci 5Entering, input = 5Entering, input = 4Entering, input = 3Entering, input = 2Entering, input = 1Leaving, result = 1Entering, input = 0Leaving, result = 0Leaving, result = 1Entering, input = 1Leaving, result = 1Leaving, result = 2Entering, input = 2Entering, input = 1Leaving, result = 1Entering, input = 0Leaving, result = 0Leaving, result = 1Leaving, result = 3Entering, input = 3Entering, input = 2Entering, input = 1Leaving, result = 1Entering, input = 0Leaving, result = 0Leaving, result = 1Entering, input = 1Leaving, result = 1Leaving, result = 2Leaving, result = 55 Analyzing the fibonacci de�nition, we notice that there are two recursivecalls to fibonacci inside this de�nition. We next write the continuations ofeach of these calls.monad define 'y. + fibonacci n - 2'monad define '(fibonacci n - 1) + y.'fibonacci is not tail recursive. In fact, each continuation contains a recur-sive call to fibonacci. We also notice, from the traced output, that fibonaccimakes applications of fibonacci to the same argument.Consider the problem of evaluating fibonacci 3. Two continuations mustbe formed. 24

www.manaraa.com

c1 =: monad define'y. + fibonacci 0'c2 =: monad define'y. + fibonacci 1'The value of fibonacci 3 is represented by the expression c2 c1 1. Next,consider the problem of evaluating fibonacci 4. Three continuations must beformed.c1 =: monad define'y. + fibonacci 0'c2 =: monad define'y. + fibonacci 1'c3 =: monad define'y. + fibonacci 2'The value of fibonacci 4 is represented by the expression c3 c2 c1 1.Next we consider the number of times fibonacci is called while evaluatingfibonacci. De�ne fib_work to be the number of times fibonacci is calledwhile evaluating fibonacci. We see that:� fib_work 0 = 1� fib_work 1 = 1� fib_work 2 = 3� fib_work 3 = 5� fib_work 4 = 9� fib_work 5 = 15It is easy to establish the recurrence formula for fib_workfib_work n = 1 + (fib_work n - 1) + fib_work n - 2Assuming that the execution time of fibonacci is proportional to fib_work,then the order of fibonacci is fib_work which is, itself, a fibonacci func-tion. This analysis leads to a laboratory experiment [How 94] in which stu-dents conduct timing measurements of the number of recursive calls per sec-ond a workstation can make to fibonacci. Since fibonacci would make1146295688027634168201 recursive calls while evaluating fibonacci 100, a work-station which can perform 1,000,000 recursive calls per second would require ap-proximately 1146295688027634 seconds (more than 363487 centuries!) to eval-uate fibonacci 100. This laboratory provides the opportunity for students todeal with formal analysis, experimental measurements, recursion and iteration.
25

www.manaraa.com

14.2 Tail-Recursive FibonacciIntroductory computer science texts [Abe 85, Spr 89] give tail-recursive de�ni-tions for the fibonacci function.fib_iter =: monad define 'fib_iter_helper 1 0 , y.'fib_iter_helper =: monad define script('a' ; 'b' ; 'count') =. y.if. count = 0do. belse. fib_iter_helper (a + b) , a , count - 1end.) fib_iter makes a single call to fib_iter_helper to computer fibonacci.fib_iter_helper is tail-recursive since the continuation of the one recursivecall is the identity function.15 Iteration and Recursion OperatorsFunctional languages often have functional abstractions for iteration and re-cursion. For example, Scheme has a mapping (iteration abstraction) functionnamed map which applies a function to each item of a list.(map (lambda(x) (* x x x)) '(2 3 4 5))produces the result(8 27 64 125)This same example is easily expressed using J. In J, the power function, ex-pressed as ^, may be used as the argument of the bond conjunction, &, producingthe cube function ^&3. This monad may be applied as:(^&3) 2 3 4 5producing the result8 27 64 125The J programming notation has a rich collection of abstractions for dealingwith iteration over the items in lists and arrays. For example, the insert adverb,/, allows a dyad to be inserted between the items of a list or array.+/ 1 2 3 4 5evaluates the expression 26

www.manaraa.com

1 + 2 + 3 + 4 + 5while*/ 1 2 3 4 5 6evaluates the expression1 * 2 * 3 * 4 * 5 * 6Scheme and J both support an extensive family of abstractions for recursionand iteration which are beyond the scope of this paper. Such features areimportant in the exposition of a more advanced treatment of recursion anditeration. For example, Iverson [Iv 95] shows extensive use of J to constructmathematical proofs of correctness of algorithms.16 Available ImplementationsThere are a number of Scheme and J implementations available for nearly ev-ery machine and operating system including Windows, WindowsNT, MacOS,Linux and other varieties of UNIX. Commercial versions of these languages areavailable as well, but free versions have proven to be more than adequate forlaboratory use and students are able to install versions of the software identicalto lab systems on their own machines. More information on available Schemesoftware may be found at:ftp://ftp.cs.indiana.edu/pub/scheme-repository/Information on J software may be found at:http://www.jsoftware.com .16.1 Text MaterialsSeveral well known introductory computer science text books which use Schemeare (most notably) [Abe 85, Fr 92, Har 94, Man 95, Spr 89]. Development ofthe J programming language is relatively recent, with the �rst papers on J ap-pearing in 1991. To this date, the only J based computer science text materialsare [How 94]. However, J has been used in an expository fashion to describeseveral topics in mathematics [Iv 92, Iv 93, Iv 95, Re 95].17 Schools Using Scheme or JA list of colleges and universities using Scheme in various courses is maintainedat the Scheme Repository:http://www.cs.indiana.edu/scheme-repository/home.htmlInformation about the use of the J programming language is maintained at:http://www.jsoftware.com/ 27

www.manaraa.com

18 SummaryLanguages which are routinely used by industry, such as Basic, FORTRAN, C,C++, etc., are often not entirely suitable for expository presentation of topicsin the introductory computer science curriculum. Frequently, students enter-ing computer science programs have already studied one of these languages andhave some programming experience. Choosing a language which is better suitedfor expository presentation of computer science topics, such as Scheme or J, canhave a leveling e�ect amongst students who have di�erent preparation for col-lege level training in computer science. Moreover, choosing a language whichallows expression of powerful ideas helps give the mindset which allows stu-dents to think what might otherwise have been "unthinkable" thoughts. Suchnotation should foster development of formal methods in addition to the prac-tical aspect of design, analysis and programming. An important method ofexposition involves building small working models of each topic. Once built,such models provide the basis for laboratory experimentation which can involvemeasurements, formulation and veri�cation of hypotheses and analysis.Programming notation becomes a powerful tool of exposition by makingan appropriate choice of language. The decision about choice of programminglanguage should be made primarily on the basis of how well key concepts incomputer science may be expressed in the language. For these reasons Schemeor J is preferable to other languages commonly used in introductory computerscience courses.Functional languages such as Scheme and J are useful in teaching recursionand iteration to introductory students. The exercise of writing the continuationof each recursive call in a de�nition forces students to think about the de�nition.Students also �nd that the alternate view of recursion as a composition of con-tinuation functions gives a new perspective on recursive de�nitions. Identifyingtail-recursive de�nitions or transforming non tail-recursive de�nitions into tail-recursive de�nitions is a useful exercise which helps enhance understanding ofthe algorithm. This author has found Scheme and J to be equally e�ective in theteaching of recursion and iteration. Both languages have signi�cant advantages,particularly when used for exposition, over imperative languages.References[Abe 85] Abelson, Harold and Sussman, Gerald with Sussman, Julie., Structureand Interpretation of Computer Programs, MIT Press, 1985.[Dij 72] Dijkstra, Edsger, "The Humble Programmer", 1972 ACM Turing lec-ture, reprinted in ACM Turing Award Lectures, The First TwentyYears, pp 17 - 31, ACM Press, 1987.[Dij 89] Dijkstra, Edsger, "On The Cruelty of Really Teaching ComputingScience", 1989 SIGCSE Award Lecture, SIGCSE Bulletin, Vol. 21,No. 1, February 1989. 28

www.manaraa.com

[Har 94] Harvey, Brian and Wright, Matthew, Simply Scheme: IntroducingComputer Science, MIT Press, Cambridge, MA, 1994.[How 94] Howland, John, \Lecture Notes for Great Ideas in Computer Science",Trinity University Computer Science Department Lecture Notes,http://www.cs.trinity.edu/About/The Courses/cs301/[How 95] Howland, John, \A Laboratory Computer Science Course for LiberalArts Students", The Journal of Computing in Small Colleges, Volume10, Number 5, May 1995.[How 96] Howland, John, \Using J as an Expository Language in the Teachingof Computer Science to Liberal Arts Students", ACM APL96 Con-ference Proceedings, Lancaster University, England, August, 1996.[How 97] Howland, John, \It's All in the Language (Yet Another Look at theChoice of Programming Language for Teaching Computer Science)",The Journal of Computing in Small Colleges, Volume 12, Number 4,March 1997.[Iv 95] Iverson, Kenneth, Concrete Math Companion, Iverson Software,Toronto, Canada, 1995.[Ive 95] Iverson, Kenneth E., J Introduction and Dictionary, Iverson Software,1995.[Kon 74] Konstam, Aaron and Howland, John, \APL as a Lingua Franca in theComputer Science Curriculum", SIGCSE Bulletin, Volume 6, Number1, February 1974.[Kon 94] Konstam, Aaron and Howland, John, \Teaching Computer SciencePrinciples to Liberal Ar ts Students Using Scheme", SIGCSE Bulletin,Volume 26, Number 4, December 1994.[Man 95] Manis, Vincent S. and Little, James J., The Schematics of Computa-tion, Prentice Hall, Englewood Cli�s, NJ, 1995.[Rie 93] Riehl, Arthur, moderator, \Using Scheme in the Introductory Com-puter Science Curricul um", Panel, SIGCSE Bulletin, Volume 25,Number 1, March 1993.[Re 95] Reiter, Cli�, Fractals Visualization and J, Iverson Software, Toronto,CA, 1995.[Spr 89] Springer, George and Friedman, Daniel, Scheme and the Art of Pro-gramming, MIT Press, 1989.[Fr 92] Friedman, Daniel, Wand, Mitchell and Haynes, Christopher. Essen-tials of Programming Languages, MIT Press, 1992.29

www.manaraa.com

[Gr 89] Graham, Knuth and Patashnik, Concrete Mathematics, Addison-Wesley Publishing Company, Reading, MA, 1989.[Iv 92] Iverson, Kenneth, Arithmetic, Iverson Software, Toronto, Canada,1992.[Iv 93] Iverson, Kenneth, Calculus, Iverson Software, Toronto, Canada, 1993[My 90] Myers, J. Paul, "The Central Role of Mathematical Logic in Com-puter Science", SIGCSE Bulletin, Vol. 22, No. 1, February 1990.

30

